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Immune cell topography predicts response to PD-1
blockade in cutaneous T cell lymphoma
Darci Phillips 1,2,3,9, Magdalena Matusiak3,9, Belén Rivero Gutierrez3, Salil S. Bhate1,3,4, Graham L. Barlow 1,3,

Sizun Jiang 1,3,5, Janos Demeter 1, Kimberly S. Smythe 6, Robert H. Pierce6, Steven P. Fling 6,

Nirasha Ramchurren 6, Martin A. Cheever6, Yury Goltsev 1,3, Robert B. West3, Michael S. Khodadoust7,10,

Youn H. Kim2,7,10, Christian M. Schürch 1,3,8,10✉ & Garry P. Nolan 1,3,10✉

Cutaneous T cell lymphomas (CTCL) are rare but aggressive cancers without effective

treatments. While a subset of patients derive benefit from PD-1 blockade, there is a critically

unmet need for predictive biomarkers of response. Herein, we perform CODEX multiplexed

tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced CTCL patients

enrolled in a pembrolizumab clinical trial (NCT02243579). We find no differences in the

frequencies of immune or tumor cells between responders and non-responders. Instead, we

identify topographical differences between effector PD-1+ CD4+ T cells, tumor cells, and

immunosuppressive Tregs, from which we derive a spatial biomarker, termed the SpatialScore,

that correlates strongly with pembrolizumab response in CTCL. The SpatialScore coincides

with differences in the functional immune state of the tumor microenvironment, T cell

function, and tumor cell-specific chemokine recruitment and is validated using a simplified,

clinically accessible tissue imaging platform. Collectively, these results provide a paradigm for

investigating the spatial balance of effector and suppressive T cell activity and broadly

leveraging this biomarker approach to inform the clinical use of immunotherapies.
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Cutaneous T cell lymphomas (CTCL) are a heterogeneous
group of rare but potentially lethal lymphomas that ori-
ginate from mature, skin-tropic CD4+ T cells1. Approxi-

mately one-third of CTCL patients present with advanced-stage
disease, which has a 5-year survival rate of 28%2. With the
exception of hematopoietic stem cell transplantation, there are no
effective or sustainable therapies for advanced CTCL3.

Immune checkpoint inhibitors, such as antibodies against PD-1,
restore T cell effector function at the tumor site4,5 and promote
robust and durable responses in a number of advanced cancers6–8.
In CTCL, PD-1 and its ligands can be simultaneously expressed on
tumor cells, making this pathway an attractive therapeutic target for
PD-1 blockade9–12.

A recent Cancer Immunotherapy Trials Network (CITN)
multicenter phase II clinical trial (NCT02243579) of the anti-PD-
1 immunotherapy, pembrolizumab, in advanced cutaneous
T cell lymphoma (CTCL) showed that 38% of patients achieved a
sustained clinical response, whereas 25% experienced disease
progression13. Despite these outcome discrepancies, biomarker
studies with traditional immunohistochemistry (IHC), gene
expression profiling, and mass cytometry did not predict pem-
brolizumab response13. New assays and associated computational
tools are critically needed to interrogate the tumor micro-
environment (TME) and better predict the clinical response to
anti-PD-1 therapies.

Since the immune system acts via coordinated cell-cell asso-
ciations, it is expected that spatial cellular attributes within the
TME prognosticate clinical outcomes. Indeed, recent studies show
that immune cells are not randomly distributed within the TME,
but rather purposefully organized into cellular neighborhoods
and niches that facilitate anti- or pro-tumor functions14,15. This
raises the question of how PD-1 blockade alters spatial cellular
context, and in turn, whether such changes can predict clinical
response to pembrolizumab therapy in CTCL. To this end, we
interrogate the spatial organization of the CTCL microenviron-
ment in the same cohort of patients enrolled in the previously
published pembrolizumab clinical trial, which failed to identify a
predictive biomarker of response.

We combine CO-Detection by indEXing (CODEX) multi-
plexed tissue imaging15–19 with transcriptomic analysis using
RNA-seq20,21 to investigate, in unprecedented detail, 70 tumor
regions from 14 advanced CTCL patients sampled before and
after pembrolizumab treatment. Characterizing the higher-order
tissue structure of the CTCL TME reveal topographical differ-
ences in effector PD-1+ CD4+ T cells, tumor cells, and immu-
nosuppressive Tregs. From this, we derive the SpatialScore: a
spatial biomarker that correlates strongly with pembrolizumab
response and is accurately recapitulated using a clinically acces-
sible multiplexed IHC (mIHC) platform. These results highlight
the importance of spatial cellular organization—namely a dis-
tancing balance of effector and immunosuppressive T cell activity
—for predicting anti-PD-1 immunotherapy response in CTCL.
Additionally, this biomarker discovery approach can be readily
applied to guide the clinical use of cancer immunotherapies in
CTCL and a range of other tumor types.

Results
Patient cohort and multimodal experimental approach. To
deeply characterize and interrogate the CTCL TME in its native
context, we analyzed pre- and post-treatment biopsies from
14 heavily pre-treated patients with advanced-stage CTCL (i.e.,
mycosis fungoides and Sézary syndrome) enrolled in the CITN-
10 clinical trial cohort (NCT02243579), who received pem-
brolizumab every 3 weeks for up to 2 years (Supplementary
Fig. 1a–b, Supplementary Table 1a)13. The post-treatment

biopsies were collected at several timepoints, as detailed
per patient in Supplementary Fig. 1c and Supplementary
Table 1a–b. For this study, 10 patients from the original 24
patient cohort were excluded due to insufficient formalin-fixed
paraffin-embedded (FFPE) sample material.

An FFPE tissue microarray was created from the 14 patient
samples (Fig. 1a.1), which comprised 70 patient-matched pre-
and post-treatment skin tumors (Fig. 1a.2). The tissue micro-
array spots were selected from the most infiltrated regions of the
skin biopsies to preclude sampling areas that were void of tumor
and immune cell types. The reproducibility of the CODEX
approach, as shown for cell densities (# of cells/mm2) per tissue
microarray spot, is demonstrated across three experiments
(Supplementary Fig. 1d). CODEX multiplexed protein imaging
identified 117,170 cells in the tissue microarray (Fig. 1a.3,
Supplementary Data 1). These results were integrated with 64
tissue transcriptomes obtained from serial sections using laser
capture microdissection and Smart-3Seq20 (i.e., RNA-seq)
(Fig. 1a.3, Supplementary Data 2, Supplementary Data 3).
Integrative computational analyses, including cellular neighbor-
hood assessment15 and CIBERSORTx (CSx)21, were then used to
profile the molecular dynamics of the CTCL microenvironment
and identify a predictive biomarker of anti-PD-1 immunother-
apy (Fig. 1a.4). Comparing the biomarker assays applied to
this cohort (Supplementary Fig. 1a), highlights the ability of
multiplexed spatial assays to extract new features and predict
therapeutic response.

Therapeutic response to pembrolizumab was assessed by
consensus global response criteria22. No significant differences
were observed at baseline between responders and nonresponders
for patient demographics, cancer type/stage, or treatment history
(Supplementary Fig. 1b). Clinical outcomes were significantly
different between patient groups. Responders had a significant
improvement in their overall skin response compared to
nonresponders, as measured by the modified Severity Weighted
Assessment Tool (mSWAT)23 (Supplementary Fig. 1b). Overall
survival was significantly longer in responders than nonrespon-
ders (i.e., nonresponders had a median survival of 109 weeks after
treatment initiation, whereas all but one responder was alive at
the median follow-up time of 142 weeks) (Fig. 1b). The
expression of key T cell, macrophage and PD-1 signaling markers
was assessed by standard single-plex IHC for each patient at
baseline (Fig. 1c). No differences were observed for these eight
markers (Fig. 1c), as shown for CD4, FoxP3, PD-1, and PD-L1
(Fig. 1d). These results demonstrate that the patient character-
istics for the current study (n= 14 patients) do not differ from
the full clinical trial cohort (n= 24 patients)13.

Discrimination of malignant and reactive CD4+ T cells in the
CTCL microenvironment. Detecting a biomarker based on the
spatial context of tumor and immune cells requires that malig-
nant and reactive CD4+ T cells can be distinguished. This is a
major challenge in CTCL, because the cell type of origin (e.g.,
effector memory T cells (TEM), central memory T cells (TCM),
tissue-resident memory T cells (TRM))24, expression of T cell
markers (e.g., CD2, CD3, CD4, CD5, CD7, CD25, FoxP3), and
clonality25 can be shared by both cell types. Furthermore,
no protein marker has yet been identified as 100% specific for
CTCL tumor cells. Using a 56-marker CODEX panel (Fig. 1e,
Supplementary Fig. 1e, Supplementary Table 2), unsupervised
machine learning, and manual curation based on marker
expression, tissue localization, and morphology, 21 unique cell
types were identified and validated (Fig. 1f, Supplementary
Fig. 2a, b), including reactive CD4+ T cells and malignant CD4+

T cells (i.e., tumor cells). Comparing the fluorescent staining of

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26974-6

2 NATURE COMMUNICATIONS |         (2021) 12:6726 | https://doi.org/10.1038/s41467-021-26974-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


reactive CD4+ T cells (blue crosses) and malignant CD4+ T cells
(red crosses) showed that in tumor cells CD7 was decreased and
CD25 and Ki-67 were increased (Fig. 1g), consistent with an
advanced CTCL phenotype26. Quantifying these expression dif-
ferences for tumor cells relative to reactive CD4+ T cells revealed
fold-changes of 0.26 for CD7, 1.40 for CD30, 3.20 for CD25, and
5.73 for Ki-67 (Fig. 1h). Tumor cells were also larger than reactive
CD4+ T cells (Fig. 1i), in line with the previous reports27. While
one patient’s tumor cells had large cell transformation, the
average size of those tumor cells were not significantly different
from those of the other 13 patients. Additionally, we identified

genes predictive of the frequency of tumor cells per tissue
microarray spot by fitting an L1-regularized linear model to bulk
RNA-seq data. This confirmed that higher expression of several
known CTCL marker genes, including CD27, IL-32, CXCL13,
BATF, and TIGIT28–32, was associated with spots with higher
frequencies of tumor cells (Fig. 1j, see yellow highlighted genes).
Notably, CTCL tumor cells can also express FoxP333, as seen for
one patient in this cohort. Our clustering approach identified this
population of malignant FoxP3+ CD4+ T cells, which differed
significantly from Tregs, with lower CD4, CD7, CD25, and FoxP3
marker expression and larger cell size (Supplementary Fig. 2d).

a

Anti-PD-1
therapy

Matched pre- and post-treatment skin biopsies

Responders
(R, n=7)

Non-responders
(NR, n=7)

Advanced CTCL patients from CITN-10 clinical trial FFPE CTCL skin samples

70 cores total

Pre-treatment Post-treatment

FFPE-CODEX
56 markers

Integrative
data analysis

RNA-seq
“selected” bulk

2 3 4

Serial sections

1

b

0 50 100 150 200
0

25

50

75

100

weeks

O
ve

ra
ll 

su
rv

iv
al

 (%
)

p=0.0168

Responders (n=7)

Non-responders
(n=7)

e f

Non-responder
CD4       FoxP3      PD-1      PD-L1

Responder
CD4       FoxP3      PD-1      PD-L1

c d

T cell & 
tumor cell 
CD2
CD3
CD4
CD5
CD7
CD8
CD25
CD30
CD69 
CD162
CD164
CD194

p53

GATA3
FoxP3

T-bet

Lymphocytes
CD45    
CD45RA    
CD45RO

Tumor & Immune 
Macrophages
CD11b   
CD68   
CD163

NK cells
CD16   
CD56   
CD57

B & plasma cells
CD20
CD38   
CD138

Granulocytes
CD15
Mast cell tryptase

Dendritic cells
CD1a
CD11c 

Functional
Proliferation  & 
activation
Granzyme B
ICOS
Ki-67 
MMP-9   

Checkpoint & 
inhibition
LAG-3 
PD-1   
PD-L1 
VISTA

Multifunctional
�-catenin
BCL-2
CD71
EGFR   
HLA-DR
IDO-1

Epithelia
Cytokeratin   
MUC-1

Blood vessels
CD31   
CD34   

Lymphatics
Podoplanin

Extracellular 
matrix
Collagen IV

Cytoplasm
Vimentin     

Nuclei
DRAQ5
Hoechst

Stromal
CODEX with 
55 markers

21 

+Reactive CD4  T cells

+Malignant CD4  T cells

13 immune cell-types

6 auxiliary cell-types

2 tumor cell-types

g

h i j

H&E H&E DRAQ5 CD3

CD4 CD7

CD25 Ki67 PD-1

CD5

Malignant

Reactive

3500

4000

4500

5000

C
el

ls
iz

e
(p

i x
el

s/
ce

ll)

-5p=7.6x10

ReactiveMalignant
+CD4  T cells

Genes predictive of tumor cells

Pr
ed

ic
tiv

e 
co

effi
ci

en
t

-0.05

0.05

0.10

0

IK
ZF

3
SK

AP
1

IK
ZF

1
SO

R
L1

KI
F5

C
R

AB
G

G
TB

KR
T1

7
RU

NX
2

LC
K

C
D

K1
TN

FS
F1

4
SC

M
L4

C
XC

L1
0

C
5 o

rf3
0

IP
C

EF
1

IG
KC

KA
N S

L 2

SE
LL

H
LA

G
TB

C
1D

10
C

M
FN

G
R

PS
7P

10
R

P1
1-

50
D

9
PF

KF
B3

G
PR

10
7

AR
HG

EF
10

C
AS

KI
N2

C
C

L1
3

U
BX

N
6

N
CA

PG
P1

C
LD

N
1 1

PL
LP

AB
O

R
AC

K1
AC

TA
2

AL
S 2

C
L

SV
EP

1
FA

N1
RP

L7
AP

6
R

P1
1-

13
3K

1
PP

P1
R

3C
TC

N1
G

AT
A2

R
PS

1 1
P7

C
H

L 1R
el

at
iv

e
m

ar
ke

re
x p

re
ss

io
n

CIBERSORTx

Cellular neighborhoods

*

****

cell-types 

+ +Reactive CD4  T cells+ +Malignant CD4  T cells

****

B
AT

F
TI

G
ITC

X
C

L1
3

IL
32C
D

27

MMP-12

CD3
CD4

CD8
FoxP

3

CD16
3

PD-1
PD-L1

PD-L2
0

25

50

75

100

Pr
e-

tre
at

m
en

t I
HC

sc
or

e 
(%

) Responders (n=7) Non-responders (n=7) p=n.s. for all

-13p=4.4x10

n=38,499

n=1,647

0

5

10

1

CD2
CD3

CD4
CD5

CD7
CD25

CD30
Ki-6

7
PD-1

PD-L1

n=62 

+CD4  T cells

+CD4  T cells

p=p=0.0005

***

****
-24p=6.1x10

****
-17p=2.7x10

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-26974-6 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:6726 | https://doi.org/10.1038/s41467-021-26974-6 | www.nature.com/naturecommunications 3

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Given the heterogeneity of CTCL, the marker expression profile
of tumor cells may differ between cohorts, especially if the
patients were heavily pre-treated. However, our findings show
that multiplexed imaging can discriminate tumor cells from
reactive CD4+ T cells at the single-cell level, which is supported
by protein expression differences, cell size measurements, and
gene expression profiling.

Deep profiling of the CTCL TME in response to anti-PD-1
immunotherapy. To delineate the complex interactions of tumor
and immune cells within the TME, we next characterized the cel-
lular composition of CTCL tumors pre- and postpembrolizumab
therapy. The 21 cell types identified by CODEX were cataloged
across patient groups, including 13 immune cell types, 6 auxiliary
cell types, and 2 tumor cell types (Supplementary Fig. 2b). Markers
for T cell subsets (CD4, CD8, FoxP3), macrophages (CD68), den-
dritic cells (CD11c), tumor cells (CD4), vasculature (CD31), and
epithelium (cytokeratin) were clearly visualized in the CODEX
fluorescent images (Fig. 2a, b, upper panels; Supplementary Fig. 3a).
The corresponding hematoxylin and eosin (H&E) images (Fig. 2a,
b, inserts; Supplementary Fig. 3b) confirmed accurate staining of
structural elements like epithelium and vasculature. Fluorescent
staining of immune and tumor cells confirmed the cell type
assignments shown in the corresponding cell type maps (Fig. 2a, b,
lower panels).

No differences in the cellular composition were noted between
responders and nonresponders pre- or post-treatment (Fig. 2c, d;
Supplementary Fig. 2c). The combined frequencies of tumor,
immune and auxiliary cell types each comprised approximately
one-third of all cells (Fig. 2c, upper panel); the same trend
held across patient groups (Supplementary Fig. 2c). Among all
immune cells, the ranked cell type frequencies were 38% for M1

macrophages, 21% for Tregs, 15% for CD8+ T cells, 5% for
M2 macrophages, 5% for CD4+ T cells, and <5% for other
immune cell types, including B cells, plasma cells, dendritic cells,
Langerhans cells, mast cells, and neutrophils (Fig. 2c, lower
panel). No differences in the mean frequencies of immune cell
types were observed between patient groups; this is highlighted
for T cells (CD4+ T, CD8+ T, Tregs) and macrophages (M1 and
M2) (Fig. 2d). This finding is consistent with the full clinical trial
cohort13 and our baseline IHC data (Fig. 1c, d), which showed no
correlation between pembrolizumab response and the expression
of T cell, macrophage or PD-1 signaling markers. However, it
contrasts with some solid tumor studies, which have correlated
the frequency of reactive T cells with clinical outcome34,35 and
immunotherapy response36,37.

We then focused on differences in immune signaling between
responders and nonresponders. Immunogenomic analyses were
performed to examine the functional immune state of the TME,
which has been shown to be a key determinant of immunother-
apeutic activity38. Gene expression signatures that have predicted

PD-1/PD-L1 blockade response (e.g., IFN-γ scores39, Supple-
mentary Table 3a) and nonresponse (e.g., TGF-β scores40,
Supplementary Table 3b) in solid tumors to our CTCL data.
No differences were observed between patient groups for the IFN-
γ (Fig. 2e) or TGF-β (Fig. 2f) gene scores. While neither signature
was predictive of pembrolizumab response in this CTCL cohort,
it is important to point out that these gene signatures were
derived from single-disease studies, and thus their application
may be limited to similar solid tumor types41.

Rare cancers like CTCL do not have specifically defined
immune gene signatures, making it a challenge to catalog their
tumor immunogenicity. Thus, gene lists of immune activation
(e.g., CD27, EOMES, and ICOS) and immunosuppression (e.g.,
ENTPD1, TGFB1, and TIGIT) molecules (Supplementary
Table 3c, d) were used to assess the functional immune state of
the TME. Genes like PDCD1 and TNFRSF18, which can be
immune activating and/or suppressive depending on the cellular
state and microenvironmental context, were excluded from this
analysis. The immune activation gene score was significantly
increased in responders post-treatment compared to pretreat-
ment (Fig. 2g), with no significant change in nonresponders. In
contrast, the immunosuppression gene score was significantly
increased in nonresponders compared to responders both pre-
and post-treatment (Fig. 2h). These findings indicate that 1)
nonresponders have an immunosuppressed phenotype relative to
responders, 2) only responders develop an immune-activated
TME following pembrolizumab treatment, and 3) the functional
immune state of the CTCL TME depends on factors beyond raw
immune cell counts.

PD-1 blockade induces spatial re-organization of the CTCL
TME. Anticipating that the functional immune state of the
TME was mediated by its spatial cellular organization, we
reasoned that specific global tissue patterns would be reflected
by a pembrolizumab responsive and nonresponsive phenotype.
To obtain a quantitative, high-level view of the CTCL
tissue architecture, cellular neighborhood (CN) analysis15 was
performed. CNs are analogous to urban neighborhoods—
essentially geographically localized areas within a larger city
that facilitate social interaction42 (Supplementary Fig. 2e).
Likewise, CNs are defined by a localized enrichment of specific
cell types within the tissue that mediate cellular interactions
and vital tissue functions (Supplementary Fig. 2f). Computa-
tionally, the CN algorithm extracts quantitative data on the
composition and spatial distribution of individual cells to reveal
how local cellular niches are organized within tissues
(Fig. 3a)15. Specifically, computational parameters like the
window size and number of CNs to be computed are manually
set (Fig. 3a.1). Each cell in the tissue is assigned to a given CN
based on the composition of cell types within the specified
window (Fig. 3a.2). The windows are then clustered and the

Fig. 1 Discrimination of malignant and reactive CD4+ T cells in the CTCL TME. a Workflow for sample preparation, CODEX, RNAseq, and computational
analyses. b Kaplan-Meier overall survival curve, comparing responders and nonresponders (hazard ratio 0.0969 responder/nonresponder; p value
calculated by log-rank test). c Pretreatment IHC protein marker expression per patient in responders and nonresponders (mean, red bar). P values
calculated by two-sided Wilcoxon’s rank-sum tests (p= not significant (n.s.) for all comparisons). d Representative pretreatment IHC images for select
markers from a responder (top) and nonresponder (bottom). e CODEX antibody panel (see also Supplementary Fig. 1e). f Identification of 21 cell types by
clustering (see also Supplementary Fig. 2a, b). g Visual verification of reactive (blue crosses) versus malignant (red crosses) CD4+ T cells in CTCL tissue.
Scale bars, 20 µm. h, Mean expression of select markers on all malignant (red bars, mean ± s.e.m.) relative to reactive (blue line) CD4+ T cells per tissue
microarray spot (pink circles); cores were excluded if they contained <5 CD4+ T cells. P values calculated by two-sided Wilcoxon’s rank-sum tests. i Cell
size, measured in pixels/cell, of all malignant (red square) and reactive (blue square) CD4+ T cells (mean ± s.e.m.). P value calculated by a two-sided
Wilcoxon’s rank-sum test. j Ranking genes most predictive of tumor cells per tissue microarray spot using an L1-regularized linear model. Red-colored
genes have positive predictive coefficients (i.e., most likely to represent tumor cells); gray-colored genes have negative predictive coefficients (i.e., less
likely to represent tumor cells). Known CTCL marker genes are highlighted in yellow. Source data are provided as a Source Data file.
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correlation of CNs and cell types are represented as a heatmap
(Fig. 3a.3). CNs are visualized as Voronoi diagrams and ana-
lyzed to better understand cellular spatial behavior (Fig. 3a.4).
Importantly, these Voroni diagrams account for the spatial
interactions between different cell types and as such provide a
layer of information beyond the cell type maps shown in
Fig. 2a, b.

Using a window size of 10 (i.e., one center cell and its nine
nearest neighbors), we identified 10 distinct CNs that were
conserved across this CTCL cohort (Fig. 3b, Supplementary
Fig. 3c). Some CNs recapitulated structural components that were
clearly discernable in the corresponding H&E and fluorescent
images, such as epithelium (CN-1, green region) and vasculature
(CN-3, brown region) (Fig. 3c). The other CNs were composed of
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previously unappreciated sub-structures within the dermal
infiltrate that were not apparent in the corresponding H&E or
fluorescent images, including immune-infiltrated stroma (CN-2,
red region), vascularized stroma (CN-4, gray region), tumor and
dendritic cells (CN-5, purple region), lymphatic enriched stroma
(CN-6, orange region), tumor and mixed immune cells (CN-7,
cyan region), tumor and CD4+ T cells (CN-8, yellow region),
innate immune cell enriched (CN-9, blue region), and Treg
enriched (CN-10, pink region) (Fig. 3c).

Comparing representative Voronoi diagrams from a responder
(Fig. 3d) and nonresponder (Fig. 3e) showed that the frequencies
of three CNs were significantly different between responders and
nonresponders. CNs enriched in tumor and dendritic cells (CN-5,
purple region; Fig. 3f) and tumor and CD4+ T cells (CN-8, yellow
region; Fig. 3g) were present at significantly higher frequencies
in responders post-treatment compared to other groups. This
suggests that the more immune-activated TME observed in
responders following pembrolizumab therapy (Fig. 3g) may be
mediated by CD4+ T cell activation by antigen-presenting
cells. Indeed, after PD-1 blockade, responders had increased
frequencies of activated ICOS+ CD4+ T cells (Fig. 3i) and
proliferating Ki-67+ CD4+ T cells (Fig. 3j) compared to
responders pretreatment and nonresponders post-treatment,
suggesting that pembrolizumab activates CD4+ T cells through
upregulation of immune-activating molecules.

In contrast, the Treg enriched CN (CN-10, pink region) was
present at a significantly higher frequency in nonresponders than
responders pre- and post-treatment (Fig. 3h), consistent with our
finding that nonresponders had a persistently immunosuppressed
TME (Fig. 2h). This finding is further supported by the increased
frequencies of a potently suppressive subset of Tregs expressing
ICOS (Fig. 3k)43,44 and a suppressive subset of IDO-1+ CD8+

T cells in nonresponders relative to responders (Supplementary
Fig. 2g)45. Despite treatment with PD-1 blockade, no differences
were observed in PD-1+ subsets of CD4+, CD8+, Tregs, or tumor
cells between groups (Supplementary Fig. 2h-k).

These data link the spatial organization of tumor and immune
cell types with the functional immune state of the TME,
highlighting specific patterns of immune control and pembroli-
zumab responsiveness. Importantly, these spatial interaction
differences (i.e., CN-5, CN-8, CN-10) between patient groups
occurred even though there were no differences in the abundance
of dendritic cells, CD4+ T cells, Tregs, or tumor cells (Fig. 2c, d,
Supplementary Fig. 4j).

Spatial signature of PD-1+ CD4+ T cells, tumor cells, and
Tregs predicts pembrolizumab response in CTCL. While
complex, computationally intensive spatial analyses have been
used to prognosticate cancer outcomes15,46, we postulated that a
streamlined approach based on the distances between a specific
tumor and immune cell types could be employed to identify a

predictive biomarker of immunotherapy response. Guided by our
CN findings, we formalized a computational scoring approach
based on the spatial interactions of CD4+ T cells, tumor cells, and
Tregs. This score, termed the SpatialScore, calculates the physical
distance ratio of each CD4+ T cell and its nearest tumor cell
(“right” distance) relative to its nearest Treg (“left” distance)
(Fig. 4a). A lower SpatialScore (i.e., CD4+ T cells are closer to
tumor cells than Tregs) suggests increased T cell effector activity
(Fig. 4a.1), whereas a higher SpatialScore (i.e., CD4+ T cells are
closer to Tregs than tumor cells) suggests increased T cell sup-
pression (Fig. 4a.2). As such, the SpatialScore can be viewed as a
proxy of the balance between T cell effector and immunosup-
pressive activity in the TME.

The SpatialScore was calculated on a per-cell basis (Supple-
mentary Data 4) and the mean value was reported for each
patient group. When calculated with all CD4+ T cells, the
pretreatment SpatialScore was significantly lower in responders
than nonresponders, with enhancement post-treatment (Fig. 4b,
compare mean SpatialScore for R, pre (0.57) versus NR, pre
(0.63)). The same trend was observed on a per-patient basis
(Supplementary Fig. 4a). Since the current study trialed PD-1
blockade, we next asked how the SpatialScore was influenced by
the PD-1+ CD4+ T cell subset. As observed with all CD4+

T cells, when computed with PD-1+ CD4+ T cells, tumor cells,
and Tregs, the SpatialScore was lower in responders than
nonresponders (Fig. 4c, compare mean SpatialScore for R, pre
(0.40) versus NR, pre (0.62)). The same trend was seen on a per-
patient basis (Supplementary Fig. 4b). Interestingly, the Spatial-
Score was lower in responders pretreatment when calculated with
PD-1+ CD4+ T cells versus all CD4+ T cells, implying increased
effector activity in this T cell subset. These results suggest that
PD-1+ CD4+ T cells are primed for increased antitumor activity
in responders, which is enhanced in the immune-activated TME
that develops following pembrolizumab therapy.

As the SpatialScore appears to predict the outcome of PD-1
blockade in CTCL, it stands to reason that there is a deep
phenotype of cell type-specific architecture that is driving
this spatial biomarker. Pretreatment differences were driven by
the closer proximity of PD-1+ CD4+ T cells and Tregs in
nonresponders (Supplementary Fig. 4c, see red arrow), consistent
with the increased immunosuppression gene scores in nonre-
sponders relative to responders (Fig. 2h). In contrast, post-
treatment differences were driven by the closer proximity of PD-
1+ CD4+ T cells and tumor cells in responders (Supplementary
Fig. 4d, see red arrow), consistent with the increased immune
activation gene score in responders relative to nonresponders
(Fig. 2g).

Importantly, no correlation was identified between the abun-
dance of PD-1+ CD4+ T cells, tumor cells, or Tregs and the
SpatialScore per tissue microarray spot (Supplementary Fig. 4g–i),
showing that the SpatialScore is not merely driven by cell type

Fig. 2 Characterization of the CTCL TME pre- and postpembrolizumab treatment. a, b Top panels: Representative CODEX seven-color overlay images
from a responder (left) and nonresponder (right) pretreatment. Scale bar, 50 µm. Insets, corresponding H&E images; scale bars, 50 µm. Bottom panels:
corresponding cell type maps. c Upper pie chart: overall frequencies of tumor, immune and auxiliary cell types. Lower pie chart: overall frequencies of all
immune cell types, including CD4+ T cells, CD8+ T cells, Tregs, M1 macrophages, M2 macrophages, and other (B cells, dendritic cells, Langerhans cells,
mast cells, neutrophils, and plasma cells). d Cell type frequencies of CD4+ T cell, CD8+ T cell, Treg, M1 macrophage, and M2 macrophage as a percentage
of all immune cells per tissue microarray spot across patient groups (mean, red bar). P values calculated with a linear mixed-effect model with Bonferroni’s
corrections for multiple comparisons (p= not significant (n.s.) for all comparisons). e, f Pretreatment IFN-γ (e) and TGF-β (f) gene scores per tissue
microarray spot in responders and nonresponders. For all box plots: box center line, median; box limits, upper and lower quartiles; box whiskers, 1.5x the
interquartile range (IQR). P values calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. g, h Immune
activation (g) and immunosuppression (h) gene scores, computed on bulk RNA-seq data, per tissue microarray spot across patient groups. Boxes, median
± upper and lower quartiles; whiskers, 1.5x IQR. P values calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons.
Source data are provided as a Source Data file.
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frequency. Additionally, the mean SpatialScore was significantly
different from that of a random sample in responders (Supple-
mentary Fig. 4k, Supplementary Fig. 4m), but not in nonresponders
(Supplementary Fig. 4l, Supplementary Fig. 4n), suggesting that an

active process specifically coordinates the spatial interactions of
PD-1+ CD4+ T cells, tumor cells, and Tregs in responders. Finally,
when the SpatialScore was calculated for CD8+ T cells (Supple-
mentary Fig. 4e) and PD-1+ CD8+ T cells (Supplementary Fig. 4f),
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it was not predictive of therapeutic response. Collectively, these
findings suggest that CD4+ T cells and the PD-1+ CD4+ T cell
subset may have a more important effector function in CTCL than
previously appreciated, in line with prior observations in Hodgkin
lymphoma47.

PD-1+ CD4+ T cells upregulate cytotoxic effector molecules in
pembrolizumab responders. To further characterize the
mechanisms contributing to the SpatialScore, we used CODEX
and RNA-seq datasets to explore whether the closer proximity of
PD-1+ CD4+ T cells and tumor cells in responders reflected
enhanced T cell effector function. Among all granzyme B
(GZMB) positive immune cells, 8.4% were CD4+ T cells. In
CTCL, cytotoxic CD4+ T cells act through a granzyme-perforin-
dependent pathway to achieve tumor cell killing48,49, similar to
cytotoxic CD8+ T cells49–51. The expression of GZMB on PD-1+

CD4+ T cells was increased in responders post-treatment relative
to other patient groups (Fig. 4d). This increased GZMB expres-
sion was confirmed visually with DRAQ5 (nuclear stain), CD4,
PD-1, and GZMB fluorescent staining (Fig. 4e, see white arrow)
and was consistent with the increased cytotoxicity gene score52,53

seen in responders post-treatment (Fig. 4f, Supplementary
Table 3e). No such cytotoxicity was observed for PD-1+ CD4+

T cells in nonresponders (Fig. 4d, e).
We also postulated that increased cytotoxicity would coincide

with a decreased resistance of tumor cells to therapy. Using genes
associated with a poor treatment response54 and progressive55

CTCL (Supplementary Table 3f), it was observed that tumor cell
resistance to pembrolizumab decreased in 100% of responders
(Fig. 4g). In contrast, 71% of nonresponders had an increased
resistance to immunotherapy (Fig. 4h) and an increased frequency
of proliferating (Ki-67+) tumor cells following treatment (Fig. 4i),
consistent with the development of progressive disease in a subset of
nonresponders following PD-1 blockade13,26,56. Collectively, these
data show that responders have the superior cytotoxic potential of
their effector PD-1+ CD4+ T cells following pembrolizumab
therapy compared to nonresponders, which coincides with the post-
treatment enhancement of the SpatialScore.

Validation of the SpatialScore with a clinically accessible
multiplexed IHC platform. Although highly multiplexed spatial
approaches like CODEX provide the raw data for deep cellular
profiling and biomarker discovery, translating these findings to a
clinical arena requires simplifying the predictive spatial signature
to a diagnostic platform that can be readily implemented in
clinical practice. Vectra, in conjugation with the Phenoptics
workflow, is a commercially available, widely adopted clinical
mIHC imaging platform, which has been used to identify bio-
markers for renal cell carcinoma57 and B cell lymphoma58. We
devised a simplified staining panel (DAPI, CD3, CD4, CD7, CD8,
CD25, FoxP3, and PD-1) that captured the PD-1+ CD4+ T cells,

tumor cells, and Tregs used to calculate the SpatialScore. Notably,
the tumor cell phenotype identified by CODEX in this cohort
(i.e., decreased expression of CD7 and increased expression of
CD25 and Ki-67; see Fig. 1h), was critical for establishing this
condensed staining panel and was readily transferred to the
Vectra platform.

Serial sections from the same CTCL TMA used for CODEX
and RNA-seq were stained with this simplified panel and imaged
with Vectra (Supplementary Fig. 5a). Across all TMA spots,
126,653 cells were identified, including 2957 PD-1+ CD4+ T cells,
6161 Tregs, and 19,847 tumor cells. The SpatialScore was then
computed on a per-cell basis (Supplementary Data 5) and the
mean was reported for each patient group. Consistent with the
CODEX results (Fig. 4c), the Vectra-derived SpatialScore was
significantly lower in responders than nonresponders pretreat-
ment (Fig. 4j, mean SpatialScore R, pre (0.35) versus NR, pre
(0.76)), with enhancement post-treatment compared to pretreat-
ment. The Vectra mIHC images (Fig. 4k, left) and corresponding
spatial maps (Fig. 4k, right) provide visual validation at the
single-cell level that PD-1+ CD4+ T cells were closer to tumor
cells in responders but closer to Tregs in nonresponders.
Furthermore, on a per-patient basis, the pretreatment Spatial-
Score was nearly five-times lower in responders than nonrespon-
ders (Fig. 4l, mean SpatialScore R, pre (0.31) versus NR, pre
(1.52)), with excellent biomarker performance measures at a
SpatialScore cutoff point of 0.7908 (Supplementary Fig. 5b–e).
When calculated per patient, the SpatialScore extended over a
wider range than when calculated for all cells per group; this is
due to sample size differences (i.e., n= 7 per patient versus
n= 1000 s of cells per group). Collectively, these results show that
findings identified by highly multiplexed imaging platforms like
CODEX can be translated to more clinically accessible platforms
like Vectra. This is critical for implementing the SpatialScore
concept to identify biomarkers of immunotherapy response
across tumor types.

Although the patient cohort studied herein (n= 14 patients)
is comparable to other molecular CTCL studies (n= 1–14
patients)9,31,59–64, we performed subsampling and patient-
exclusion analyses to validate that our sample size was sufficient
to detect clinically relevant and statistically robust differences in
the SpatialScore. First, 100 iterations of subsampling were
performed at two independent values65; namely 50 or 75% of
the Vectra-derived pretreatment SpatialScore data (n= 1385
SpatialScore measurements). We next tested whether the mean
SpatialScore was significantly different between responders and
nonresponders within each iteration of the sampled data. The
distribution of p values for the mean SpatialScore differences
between patient groups for each of these 100 iterations shows that
even with 50% data subsampling, most iterations yield a p
value < 0.05 (Supplementary Fig. 5f; the proportion of statistically
significant p values is 73 and 98% for subsamples of 50 and 75%,
respectively). Estimation statistics is a simple visual framework to

Fig. 3 Cellular neighborhoods reveal differences in the spatial TME organization in responders and nonresponders. a Cellular neighborhood (CN)
analysis schematic. [1] Selection of computational parameters, including the window size (five in this schematic) and the number of CNs to be computed
(five in this schematic). [2] Assignment of an index cell (i, center of window) to a given CN based on the composition of cell types within its corresponding
window the clustering of windows. [3] Heatmap of cell type distribution for each CN and assignment of CN names. [4] Visualization of CNs as a Voronoi
diagram. b Identification of 10 conserved CNs in the CTCL TME using a window size of 10. c Representative Voronoi diagram of the 10 CNs in a responder
post-treatment, with the corresponding H&E and seven color fluorescent CODEX images. Scale bar, 20 µm. d–e Voronoi diagrams of CNs in a responder
(d) and nonresponder (e) post-treatment, highlighting CN-5 (tumor and dendritic cells), CN-8 (tumor and CD4+ T cells) and CN-10 (Treg enriched).
f–h Frequencies of CN-5 (f), CN-8 (g) and CN-10 (h) per tissue microarray spot across patient groups (mean, red bar). P values calculated with a linear
mixed-effect model with Bonferroni’s corrections for multiple comparisons. i–k Frequencies of ICOS+ CD4+ T cell (i), Ki-67+ CD4+ T cell (j) and ICOS+

Treg (k) as a percentage of all immune cells per tissue microarray spot across patient groups (mean, red bar). P values calculated with a linear mixed-effect
model with Bonferroni’s corrections for multiple comparisons. Source data are provided as a Source Data file.
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ascertain different effect sizes between compared groups, displaying
all data points and its effect size distribution as a bootstrap 95%
confidence interval66,67. Visualizing the mean SpatialScore for each
iteration with bootstrap-coupled estimation67, the mean Spatial-
Score difference between paired responders and nonresponders (i.e.,
effect size) across 100 subsampling iterations of 50% (Supplemen-
tary Fig. 5g) and 75% (Supplementary Fig. 5h) of the data was
statistically significant. To further confirm the robustness of our
findings, we performed exclusion analysis on the Vectra-derived
SpatialScore data. For this analysis, we iteratively excluded one of
the 14 patients and confirmed that the SpatialScore between
responders and nonresponders remained statistically significant

overall 14 iterations (Supplementary Fig. 5i). Furthermore,
bootstrap-coupled estimation of the mean SpatialScore differences
between responders and nonresponders across these 14 iterations of
patient exclusion confirmed a large effect size between the two
patient groups (Supplementary Fig. 5j). These statistical analyses
show that a sample size of 14 patients was sufficient to stratify
responders and nonresponders based on the SpatialScore.

Tumor cell-specific CXCL13 expression coincides with a
favorable response to PD-1 blockade. Finally, to add insight into
the complex molecular processes driving the SpatialScore, we
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examined potential recruitment mechanisms by identifying genes
predictive of the spatial interactions between PD-1+ CD4+

T cells, tumor cells, and Tregs. An L1-regularized linear model
was fit to bulk RNA-seq data on a per spot basis, which revealed
seven genes predictive of the SpatialScore including three che-
mokines: CXCL9, CCL22, and CXCL13 (Fig. 5a). CXCL9 and
CCL22 are known to mediate Treg recruitment68,69; they had
positive coefficients and were predictive of the higher SpatialScore
seen in nonresponders. CXCL13 is a chemoattractant expressed
on benign lymphocytes and CTCL tumor cells28,70; it had a
negative coefficient and was predictive of the lower SpatialScore
seen in responders. Bulk CXCL13 gene expression was sig-
nificantly increased in responders post-treatment compared to
other patient groups (Fig. 5b), which was confirmed by CXCL13
IHC shown quantitatively (Fig. 5c) and visually (Fig. 5d).

We then analyzed a publicly available scRNA-seq dataset of
CTCL skin tumors62 to identify the main cell type overexpressing
CXCL13. Ten clusters were annotated including tumor cells,
CD4+ T cells (CD4), Tregs, CD8+ T cells (CD8), B & plasma cells
(B&PC), macrophages (mac), dendritic cells (DC), stroma,
vasculature (vasc), and keratinocytes (KC) (Supplementary
Fig. 6a, b). All cells with a CXCL13 log1p normalized read count
>0.5 were analyzed and tumor cells had the highest mean
expression of CXCL13 (Fig. 5e). Additionally, the frequency
of CXCL13-expressing cells was highest among tumor cells
compared to other cell types (Fig. 5f).

CIBERSORTx (CSx) is a computational framework that uses
gene expression signatures to enable cell type-specific gene
expression to be inferred from bulk RNA-seq data without physical
cell isolation21. We used CSx to computationally resolve tumor,
stromal, and immune cell subsets in bulk RNA-seq data (Fig. 5g,
Supplementary Table 4a, b, Supplementary Data 3, Supplementary
Data 6). Using the 10 annotated clusters shown in Fig. 5e, f, and
Supplementary Data 7, a signature matrix, consisting of cell type-
specific marker genes, was generated (Supplementary Fig. 6c,
Supplementary Data 8, see Methods). This signature matrix was
used to enumerate CSx-resolved cell type fractions and resolve gene
expression profiles from CTCL bulk transcriptomes. Strong
correlations were observed between the CSx-resolved cell type
frequencies and CODEX-identified cell type frequencies (Fig. 5h,
Supplementary Fig. 7, Supplementary Fig. 8), confirming the utility
of the CSx approach.

The CSx-resolved gene expression profiles of tumor cells were
thoroughly characterized and compared across patient groups.
Interestingly, RAB11B, a RAS superfamily member of small GTP-

binding proteins, was the only tumor cell gene with significantly
different expression between responders and nonresponders
pretreatment (Supplementary Fig. 6d), suggesting an absence of
intrinsic tumor cell differences between patient groups at
baseline. In contrast, numerous genes, including CXCL13, were
upregulated in the tumor cells of responders post-treatment
compared to pretreatment (Fig. 5i, see CXCL13 in bold). This
finding is consistent with an increased susceptibility of responder
tumor cells to PD-1 blockade therapy and supported by the
decreased tumor therapy resistance score observed in responders
post- vs pretreatment (Fig. 4g). Interestingly, only three genes
(BRD3, TWF2, and ZNF365) were differentially expressed in
nonresponder tumor cells post-treatment compared to pretreat-
ment (Fig. 5j), which suggests that nonresponder tumor cells are
resistant to PD-1 blockade, in line with the increased tumor
therapy resistance score observed in nonresponders post- vs
pretreatment (Fig. 4h). Finally, co-staining the tissue section used
for the Vectra mIHC experiment with an anti-CXCL13 antibody
by standard IHC, followed by co-localization analysis of tumor
cells and CXCL13-positive cells, provided visual confirmation
that tumor cells are the primary expressors of CXCL13 (Fig. 5k,
Supplementary Fig. 6e).

Next, we assessed CXCL13 expression in tumor cells and its
role in recruiting reactive lymphocytes. CSx-resolved tumor cell-
specific CXCL13 expression was significantly increased in
responders post-treatment compared with other patient groups
on a per tissue microarray spot basis (Fig. 5l). On a per-patient
basis, tumor cell-resolved CXCL13 expression increased in 100%
of responders post- vs pretreatment (Fig. 5m) versus 29% of
nonresponders (Fig. 5n). CXCL13 exclusively binds to the
chemokine receptor CXCR5, which is expressed on B cells, CD4+

T cells, CD8+ T cells, and skin-derived migratory dendritic cells71.
CXCR5 expression was increased in bulk mRNA of responders
post-treatment relative to pretreatment, but did not reach statistical
significance (Supplementary Fig. 6f). The data lacked significant
power to unmix CXCR5 on CD4+ T cells by CSx; however, tumor
cell-specific CXCL13 expression was positively correlated with bulk
mRNA CXCR5 expression (Fig. 5o) and a strong receptor-ligand
interaction was predicted between CXCL13 in tumor cells and
CXCR5 in CD4+ T cells (Supplementary Fig. 8d), suggesting a
chemoattractant recruitment mechanism.

Collectively, these results indicate that PD-1 blockade distinctly
alters the CTCL TME of therapeutic responders and nonrespon-
ders. Pretreatment differences in the functional immune state of
responders and nonresponders likely regulate the baseline spatial

Fig. 4 Spatial relationship between CD4+ T cells, Tregs and tumor cells predicts pembrolizumab response in CTCL. a SpatialScore schematic. The
SpatialScore is calculated by taking the ratio of the physical distance between each CD4+ T cell and its nearest tumor cell (distance “right”) relative to its
nearest Treg (distance “left”). [1] A lower SpatialScore (i.e., CD4+ T cells closer to tumor cells than Tregs) suggests increased T cell effector activity. [2] A
higher spatial score (i.e., CD4+ T cells closer to Tregs than tumor cells) suggests increased T cell suppression. b–c SpatialScore calculated per cell for all
CD4+ T cells (b) and PD-1+ CD4+ T cells (c) across patient groups (mean ± s.e.m.). P values calculated with a linear mixed-effect model taking a patient
identifier as a random effect. d GZMB protein expression on PD-1+ CD4+ T cells by CODEX per tissue microarray spot (mean fluorescence intensity
(arbitrary units, a.u.), red bar). P values calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. e CODEX
images showing contact between a tumor cell (cross) and GZMB-expressing PD-1+ CD4+ T cell (arrow) in responder patient 13 post-treatment. Scale
bars, 10 µm. f Cytotoxicity gene scores, computed on bulk RNA-seq data, per tissue microarray spot. Boxes, median ± upper and lower quartiles; whiskers,
1.5x IQR. P values calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. g–h Pre- to post-treatment changes in
tumor therapy resistance gene scores, computed on bulk RNA-seq data, per patient in responders (g) and nonresponders (h). Boxes, median ± upper and
lower quartiles; whiskers, 1.5x IQR. P values were calculated by two-sided Wilcoxon’s signed-rank tests. i Ki-67+ tumor cell frequencies per tissue
microarray spot (mean, red bar). P values calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. j SpatialScore
calculated from Vectra mIHC data per cell for all PD-1+CD4+ T cells (mean ± s.e.m.). P values calculated with a linear mixed-effect model taking a patient
identifier as a random effect. k Vectra mIHC images (left panels) and corresponding spatial plots (right panels)from responder patient 13 (R) and
nonresponder patient 14 (NR) pretreatment. Scale bars, 20 µm. l SpatialScore calculated from Vectra mIHC data per patient in responders and
nonresponders pretreatment(mean, red bar). P value calculated by a two-sided Wilcoxon’s rank-sum test, with no adjustments for multiple hypotheses.
Source data are provided as a Source Data file.
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organization that underlies the SpatialScore and the potential for
immune cell priming. In responders, pembrolizumab therapy
appears to promote T cell activation and upregulate CXCL13 in
tumor cells (Fig. 6, top panel). In turn, CXCL13 overexpression
seems to attract effector/cytotoxic PD-1+ CD4+ T cells to tumor
cells, which promotes CD4+ T cell-mediated tumor cell

inhibition and killing. As such, the overexpression of CXCL13
in tumor cells provides a potential mechanism for the sustained
clinical activity seen in responders. In contrast, nonresponders
have a persistently immunosuppressed TME, which appears to
mediate the increased interaction between the inhibitory Tregs
and PD-1+ CD4+ T cells and maintains this CD4+ T cell subset
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in an exhausted state (Fig. 6, bottom panel). In the setting of
pembrolizumab resistance, nonresponder tumor cells seem to
remain aggressive and proliferative following treatment, account-
ing for the development of progressive disease. Thus, underlying
differences in the functional immune state of the TME—coupled
with alterations in CD4+ T cell effector activity versus
suppression and tumor cell-specific CXCL13 expression—appear
to be associated with distinct spatial cellular patterns that predict
the efficacy of PD-1 blockade in CTCL.

Discussion
For anti-PD-1 immunotherapies to provide maximal benefit to
cancer patients, the drivers and resistors of clinical response must
be identified. Traditional biomarker studies with IHC, gene
expression profiling, and tumor mutational burden assays do not
fully account for spatial cellular context and have an imperfect
correlation with immunotherapy outcomes72. This was true for our
CTCL cohort: No pretreatment differences were observed in
immune composition, expression of PD-1/PD-L1 proteins, or IFN-
γ/TGF-β gene signatures between responders and nonresponders.

We therefore explored alternative approaches, including spatially-
resolved multiplexed tissue imaging, which has been shown to
significantly improve the accuracy of predicting response to PD-1
blockade in several tumor types73.

CODEX analysis revealed global prognostic spatial patterns that
were predictive of clinical response, including a localized enrich-
ment of tumor and CD4+ T cells (CN-8) in responders and of
Tregs (CN-10) in nonresponders. Profiling the spatial relationships
between effector PD-1+ CD4+ T cells, tumor cells, and immuno-
suppressive Tregs allowed us to derive the SpatialScore—a clinically
useful biomarker that correlated strongly with pembrolizumab
response in CTCL. While previously identified spatial biomarkers
rely on pairwise distances (e.g., PD-1+ T cells and PD-L1+ tumor
cells)47,74,75, the SpatialScore accounts for the interactions between
three functionally distinct cell types. As such, the SpatialScore
represents a predictive approach and accounts for three key ther-
apeutic determinants underlying PD-1 blockade in CTCL: 1)
functional immune state of the TME, 2) T cell function, and 3)
chemoattraction.

First, the SpatialScore reflects differences in the functional
immune phenotypes between CTCL responders and nonresponders.

Fig. 5 CXCL13 is a key driver of pembrolizumab response in CTCL. a Seven genes from bulk RNAseq data predictive of the SpatialScore. b Normalized bulk
CXCL13 gene expression per tissue microarray spot. Boxes, median ± upper and lower quartiles; whiskers, 1.5x IQR. P values calculated with a linear mixed-
effect model with Bonferroni’s corrections for multiple comparisons. c CXCL13 protein expression by IHC per tissue microarray spot (mean, red bar).
P values calculated with a linear mixed-effect model with Bonferroni’s corrections for multiple comparisons. d Representative CXCL13 IHC images from
responder patient 9 (left panels) and nonresponder patient 14 (right panels). Scale bars, 20 µm. e–f CXCL13 expression in single-cell transcriptomes from
CTCL skin tumors (Gaydosik et al.)62. e Normalized expression of CXCL13 in single cells; excluded cells with CXCL13 log1p normalized read counts < 0.5.
Boxes, median ± upper and lower quartiles; whiskers, 1.5x IQR. f Proportion of CXCL13-expressing cells per cell type. g CIBERSORTx workflow schematic.
A CSx deconvolution signature matrix was generated from single-cell transcriptomes (Gaydosik et al.)62 (left) and applied to CTCL bulk transcriptomes
obtained with laser-capture microdissection (LCM) and Smart-3Seq (right) to enumerate cell type fractions and resolve gene expression profiles.
h Heatmap correlation of CSx-resolved and CODEX-identified cell type frequencies; Spearman coefficients are on the diagonal. i–j Differential expression of
CSx-resolved tumor cell genes in responders (j) and nonresponders (k) pre- and post-treatment. P values calculated with a linear mixed-effect model with
Benjamini-Hochberg correction (significantly different genes (p < 0.1), red; CXCL13 highlighted yellow). k Vectra mIHC image (top left), corresponding
tumor cell depiction (top right), corresponding CXCL13 IHC image (bottom left), and corresponding overlay image of CXCL13 staining and tumor cells
(bottom right) in responder patient 9 post-treatment. Scale bars, 20 µm. l Normalized CSx-resolved CXCL13 expression in tumor cells per tissue microarray
spot. Boxes, median ± upper and lower quartiles; whiskers, 1.5x IQR. P values calculated with a linear mixed-effect model with Bonferroni’s corrections for
multiple comparisons. m–n Pre- to post-treatment changes in normalized CXCL13 gene expression from CSx-resolved tumor genes per patient in
responders (m) and nonresponders (n). Boxes, median ± upper and lower quartiles; whiskers, 1.5x IQR. P values calculated by two-sided Wilcoxon’s
signed-rank tests. o Correlation of CSx-resolved tumor cell CXCL13 expression and bulk CXCR5 expression per tissue microarray spot. Data evaluated with
two-sided Spearman test. Source data are provided as a Source Data file.
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Following pembrolizumab therapy, the TME of responders becomes
activated, as evidenced by the increased immune activation gene
score, increased frequency of ICOS+ and Ki-67+ CD4+ T cells, and
a local enrichment of tumor cells with dendritic cells (CN-5) and
CD4+ T cells (CN-8). These findings suggest that in responders PD-
1 blockade specifically activates CD4+ T cells through the expres-
sion of immunostimulatory molecules and co-stimulation by
antigen-presenting cells, resulting in CD4+ T cell proliferation76,77.
In contrast, nonresponders have a persistently immunosuppressed
TME. This is supported by their increased immunosuppression gene
score, increased frequency of a Treg enriched neighborhood
(CN-10), and the expansion of a highly suppressive ICOS+ Treg
subset, which has been associated with poor clinical outcomes in
melanoma43 and liver cancer44. These results suggest that both the
increased suppressive function and spatial organization of Tregs in
nonresponders contribute to the lack of pembrolizumab response.
We speculate that the absence of this pretreatment immunosup-
pression in responders promotes the 1) advantageous spatial inter-
actions of tumor and PD-1+ CD4+ T cells that underlies the lower
SpatialScore and 2) priming and activation of CD4+ T cells fol-
lowing immunotherapy.

Second, the SpatialScore captures differences in T cell function
between CTCL responders and nonresponders. After PD-1
blockade, T cell effector activity is restored in responders,
whereas nonresponders have a continually exhausted T cell
phenotype. Consistent with studies of Hodgkin lymphoma47,
bladder cancer53, and glioblastoma78, our data suggest that CD4+

T cells, and particularly the PD-1+ CD4+ T cell subset, are crucial
effectors that influence pembrolizumab response in CTCL. In
responders post-treatment, PD-1+ CD4+ T cells increase GZMB
expression and move closer to tumor cells, similar to the
granzyme-perforin-dependent tumor-killing mechanism used by
cytotoxic CD8+ T cells48–51. Notably, prior studies have shown
that antitumor activity is enhanced by a closer proximity of
cytotoxic T cells to tumor cells79,80 and by removing inhibitory
Tregs from the TME milleu53. The SpatialScore combines these
principles by measuring the physical distances between 1) PD-1+

CD4+ T cells and tumor cells (i.e., effector function) and 2) PD-
1+ CD4+ T cells and Tregs (i.e., suppressive function). The
SpatialScore therefore reflects the balance of T cell effector versus
suppressive activity in the TME, which are key determinants of
the efficacy of PD-1 blockade.

Third, increased expression of CXCL13 is predictive of the lower
SpatialScore and improved clinical outcomes seen in CTCL
responders, consistent with prior studies in the breast81, colon82,
ovarian83,84, lung85, and urothelial cancers86 as well as respon-
siveness to anti-PD-1 immunotherapy84,85,87. We speculate that the
increased RNA and protein expression of CXCL13 in responder
tumor cells following pembrolizumab therapy is advantageous in
localizing effector PD-1+ CD4+ T cells within the TME. Previous
studies show that upregulation of CXCL13 strongly attracts
CXCR5+ CD4+ T cells to the tumor site85 and PD-1+ CXCR5−

CD4+ T cells in IgG4-related disease88. Additionally, a recent
bladder cancer study showed that the tumor-specific gene expres-
sion program of cytotoxic GZMB+ CD4+ T cells treated with anti-
PD-L1 therapy was marked by tumor overexpression of CXCL1353.
Furthermore, CXCL13 null mice with bladder tumors did not
respond to anti-PD-1 treatment and had a lower frequency of T cell
infiltration compared their wild-type counterparts86. Collectively,
these findings support a chemoattractant mechanism for the sus-
tained clinical response to pembrolizumab therapy observed in
CTCL responders: upregulation of CXCL13 in tumor cells attracts
effector PD-1+ CD4+ T cells, promoting successful antitumor
activity. This aspect of pembrolizumab responsiveness is captured
by the lower SpatialScore seen in responders and underscores the
importance of T cell topography as a spatial biomarker.

Presentation of the SpatialScore approach provides an important
conceptual foundation for identifying spatial biomarkers of
immunotherapy response and deeply characterizing the TME. By
distilling high-dimensional pathology into a simplified spatial
metric that can be routinely measured in clinical practice, the
SpatialScore represents a major advancement for the clinical use of
immunotherapies. However, key questions still need to be addres-
sed: 1) Does this spatial biomarker of PD-1+ CD4+ T cells, tumor
cells, and Tregs translate broadly for the prediction of pem-
brolizumab response in CTCL?, 2) What is the threshold value for
the SpatialScore that can be used to clinically stratify CTCL patients
into probabilistic responders and nonresponders?, 3) Can scRNA-
seq and T cell receptor sequencing studies reveal unique features of
PD-1+CD4+T cells in CTCL responders and ICOS+ Tregs in
nonresponders?, 4) Can CXCL13 expression levels—in both
skin and blood—serve as surrogates of pembrolizumab activity in
CTCL and guide ongoing treatment decisions?, and 5) Can the
SpatialScore concept (i.e., simplified spatial metric of effector
vs immunosuppressive activity in the TME) be translated to
other immunotherapies and tumor types? We anticipate that the
SptialScore paradigm will be adopted by users of highly multiplexed
imaging technologies (e.g., CODEX, MIBI, and IMC) and clinically
accessible mIHC platforms (e.g., Vectra) alike, which will advance
the mechanistic insights of immunotherapy and better inform their
clinical use in cancer patients.

Methods
Human subjects and clinical trial study design. The CITN-10 trial
(NCT02243579) was a multicenter, phase II, single-arm clinical trial that investi-
gated the efficacy of pembrolizumab in 24 patients with two common forms of
relapsed/refractory CTCL: mycosis fungoides and Sézary syndrome13. Written
informed consent was obtained from all enrolled patients in accordance with the
latest version of the Declaration of Helsinki. The study protocol and collection of
tissues were approved by the Institutional Review Board (IRB) at Stanford Uni-
versity (Protocol #5538). The use of tissues for research was fully de-personalized
and approved by the Stanford University IRB Administrative Panels on Human
Subjects in Medical Research (HSR #46894). All patients had a clin-
icopathologically confirmed diagnosis of mycosis fungoides or Sézary syndrome
(clinical stage IB to IV) that had relapsed, was refractory to, or had progressed after
at least one standard systemic therapy. Exclusion criteria included an age less than
18 years, central nervous system disease, active autoimmune disease, previous
exposure to any anti-PD-1, anti-PD-L1, or anti-PD-L2 therapy, or treatment with
radiotherapy or other anticancer agents within 15 weeks of the pretreatment
biopsy. Topical medications were not applied to the biopsied areas during treat-
ment or within 8 weeks of the pretreatment biopsy. Patients were treated with
2 mg/kg pembrolizumab by intravenous infusion every 3 weeks for up to
24 months13. Response and primary endpoint (overall response rate) were assessed
by consensus global response criteria22.

Sample collection and tissue microarray construction. Skin biopsy specimens
were collected from the primary tumor site and FFPE histology blocks were generated
according to standard pathology procedures. Pretreatment biopsies were obtained
prior to the first pembrolizumab infusion and post-treatment biopsies were collected
during and at the conclusion of therapy (Supplementary Fig. 1, Supplementary
Table 1a-b). H&E-stained sections from all biopsies were reviewed by two board-
certified pathologists (C.M.S. and R.H.P.). Fourteen of the 24 biopsy samples had
adequate FFPE material to analyze. These samples included seven responders (one
complete response, six partial response) and seven nonresponders (three progressive
disease, four stable disease). Two to three cores of 0.6 mm diameter from the most
grossly infiltrated regions of each biopsy sample were digitally annotated and com-
piled into a tissue microarray. The most infiltrated regions were used to avoid samples
that were primarily composed of dermal collagen void of tumor and immune cell
types. The tissue microarray was sectioned at 4-µm thickness and mounted onto
VectabondTM-treated (Vector Labs, #SP-1800) square glass coverslips (22 × 22mm,
#1 1/2, Electron Microscopy Sciences, #72204-01).

Immunohistochemistry. IHC for CD3 (clone CD3-12; Abd Serotec), CD4 (clone
4B12; Leica), CD8 (clone CD8/144B; Dako), FoxP3 (clone 236 A/E7; Abcam),
CD163 (clone 10D6; Thermo Fisher Scientific), PD-1 (clone NAT105; Cell Mar-
que), PD-L1 (clone 22C3; Merck Research Laboratories), and PD-L2 (clone 3G2;
Merck Research Laboratories) was performed as previously described89. Images
were scored by CITN pathologists, and the positive percentage of the total
mononuclear cell infiltrate was reported13.
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Multiplex immunohistochemistry and analysis. mIHC was performed as pre-
viously described90. Briefly, 4-µm FFPE tissue sections were baked for 1 h at 60 °C,
dewaxed, and stained on a BOND Rx autostainer (Leica) according to Opal Multiplex
IHC assay (Akoya Biosciences)s protocol with the following changes: additional high
stringency washes were performed after the secondary antibody and Opal fluor
applications using high-salt TBST (0.05M Tris, 0.3M NaCl and 0.1% Tween-20, pH
7.2–7.6), and TCT was used as the blocking buffer (0.05M Tris, 0.15M NaCl, 0.25%
Casein, 0.1% Tween 20, pH 7.6 ± 0.1). The antibody panel was stained in the fol-
lowing order, with antibody stripping between positions. Each primary antibody was
incubated for 60min, followed by 10-min incubation with a secondary antibody
(OPAL polymer HRP mouse plus rabbit, Akoya Biosciences), followed by the
application of the tertiary TSA-amplification reagent (OPAL Fluor, Akoya Bios-
ciences) for 10min. Positions were as follows: position 1: CD8 (clone CD8/144B,
DAKO #M7103; working concentration 0.8 µg/ml; OPAL Fluor 520); position 2:
CD25 (clone 4C9, Cell Marque #125M-14; working concentration 0.17 µg/ml; OPAL
Fluor 540); position 3: CD3 (clone SP7, Thermo Fisher Scientific #RM-9107; working
concentration 0.06 µg/ml; OPAL Fluor 570); position 4: PD-1 (clone EPR4877(2),
Abcam #ab137132, working concentration 1.0 µg/ml; OPAL Fluor 650); position 5:
CD7 (clone MRQ-56; Cell Marque #107M-24; working concentration 1.18 µg/ml;
OPAL Fluor 690); position 6: CD4 (clone EP204, Epitomics; #AC0173A; working
concentration 0.08 µg/ml; OPAL Fluor 480); and position 7: FoxP3 (clone 236 A/E7;
eBioscience #14-4777-82; working concentration 5.0 µg/ml; OPAL Fluor 620). Sub-
sequently, slides were stained with Spectral DAPI (Akoya Biosciences) for 5min,
rinsed, and mounted with Prolong Gold Antifade reagent (Thermo Fisher Scientific
#P36930). After curing for 24 h at room temperature in the dark, images were
acquired on a Vectra Polaris automated quantitative pathology imaging system
(Akoya Biosciences). The raw images were spectrally unmixed using the Phenoptics
inForm software (Akoya Biosciences) and exported as multi-image TIFF files. These
antibodies have been previously validated90,91. The staining order and pattern of these
antibodies were confirmed in tonsil tissue before proceeding with the CTCL tissue
microarray experiment.

After fluorescent imaging, the slides were de-coverslipped, loaded onto the
BOND Rx autostainer, stripped of bound antibody, and a post-mIHC staining for
CXCL13 (goat polyclonal, R&D Systems #AF801; working concentration 0.5 µg/ml;
incubation 60 min) was performed. Bound antibody was revealed by antigoat HRP
secondary ImmPress HRP (Vector Labs #MP-7405; concentration ready-to-use;
incubation 12 min), followed by DAB chromogen using the BOND Polymer Refine
Detection kit (Leica) according to the manufacturer’s instructions. After
counterstaining with hematoxylin, slides were dry-mounted and scanned on an
Aperio AT turbo digital slide scanning system (Leica).

HALO software (Indica Labs) was used to perform single-cell analysis of the
Vectra mIHC images. Cells were visualized based on nuclear and cytoplasmic
stains, and mean pixel fluorescence intensity in the applicable compartments of
each cell were measured (i.e., CD4 in the cytoplasmic compartment and FoxP3 in
the nuclear compartment). A mean intensity threshold above background was used
to determine positivity for each fluorochrome, thereby defining cells as either
positive or negative for each marker. The data was then used to define co-localized
populations, including PD-1+ CD4+ T cells, tumor cells, and Tregs. Spatial
positions were extracted for each cell, and the spatial distances and ratios between
these three cells types were calculated as detailed below. Performance of the
SpatialScore biomarker was evaluated with the easyROC interface v1.3.1, available
with the R package shiny (http://www.biosoft.hacettepe.edu.tr/easyROC/)92.
CXCL13 IHC images were scored using a classifier method for the DAB stain based
on optical density to obtain the positive percentage of the total mononuclear cell
infiltrate per spot.

CODEX antibodies. For CODEX, purified, carrier-free monoclonal and polyclonal
anti-human antibodies were purchased from commercial vendors (Supplementary
Table 2). The library of maleimide-modified short DNA oligonucleotides (TriLink)
used for antibody conjugations was previously validated18. Conjugations were
performed at a 2:1 weight/weight ratio of oligonucleotide to antibody, with at least
100 µg of antibody per reaction, as previously described15,16,19. All conjugated
antibodies were validated and titrated under the supervision of a board-certified
pathologist (C.M.S.), according to our recently published protocol16. Briefly, the
conjugation of oligonucleotide to antibody was assessed using flow cytometry. Each
conjugated antibody was then validated by staining an appropriate FFPE specimen
with the antibody of interest, a positive control, and a negative control, using Alexa
Flour 488, ATTO 550, and Alex Flour 647 as fluorescent reporters. Once validated,
the staining for each conjugated antibody was optimized by starting at a dilution of
1:100 and titrating according to the signal-to-noise ratio. The specificity, sensitivity,
and reproducibility of CODEX conjugated antibody staining has been demon-
strated across multiple experiments in healthy and diseased tissues15–19.

CODEX multiplex tissue staining and imaging. The CODEX experiment was
performed, as previously described15,16,19. Briefly, the coverslip was deparaffinized
and rehydrated, and heat-induced epitope retrieval was performed using Dako
target retrieval solution, pH 9 (Agilent, #S236784-2) at 97 °C for 10 min. The
coverslip was stained with an antibody cocktail with 54 antibodies (Supplementary
Table 2) to a volume of 100 µl overnight at 4 °C in a sealed humidity chamber on a
shaker. After multiple fixation steps using 1.6% paraformaldehyde, 100% methanol,

and BS3 (Thermo Fisher Scientific, #21580), the coverslip was mounted onto a
custom-made acrylic plate (Bayview Plastic Solutions). Imaging was performed
with a Keyence BZ-X710 inverted fluorescence microscope equipped with a CFI
Plan Apo λ 20x/0.75 objective (Nikon), an Akoya CODEX microfluidics instru-
ment, and CODEX driver software v1.29.0.1 (Akoya Biosciences). Light exposure
times and the arrangement of cycles are outlined in Supplementary Table 2. At the
conclusion of the CODEX multicycle reaction, H&E staining was performed, and
images were acquired in brightfield mode. Three experimental replicates were
performed. As these experiments were run on consecutive tissue sections, there was
minimal variation in cell density (number of cells/mm2; Supplementary Fig. 1d),
cell composition, or cell localization between experiments. Experiment #1 had the
highest mean density per tissue microarray spot and was selected for further
processing and analysis.

Data processing of CODEX images. Raw TIFF image files were processed using the
CODEX Toolkit (github.com/nolanlab/CODEX), as previously described15,16,19.
These images are hosted on ImmunoAtlas (https://immunoatlas.org/NOLN/210920-
1/). After processing, the staining quality for each antibody was visually assessed in
each tissue microarray spot, and cell segmentation was performed using the DRAQ5
nuclear stain. Marker expression was quantified, and single-cell data were saved as
FCS files, which were then imported into CellEngine (cellengine.com) for cleanup
gating. This resulted in a total of 117,170 cells across all tissue microarray spots.

After cleanup gating, FCS files were exported from CellEngine, imported into
VorteX clustering software93, and subjected to unsupervised X-shift clustering
using an angular distance algorithm. Clustering was based on all antibody markers
except CD11b, CD16, CD164, CCR4, CCR6, EGFR, and p53. The optimal cluster
number was guided by the elbow point validation tool in VorteX, resulting in 78
clusters. Clusters were manually verified and assigned to cell types based on
morphology in H&E and fluorescent CODEX images and on their marker
expression profiles. Clusters with similar features were merged, resulting in 21 cell
type clusters. The expression frequencies of ICOS, IDO, Ki-67, and PD-1 were
determined for the T cell and tumor cell clusters by manual gating in CellEngine
for each tissue microarray spot, with visual comparison to the raw
fluorescent image.

Cellular neighborhood identification. CN identification was performed using a
custom k-nearest neighbors’ algorithm in Python (github.com/nolanlab/
NeighborhoodCoordination)15. For each of the 117,220 cells in this experiment, the
window size was set at 10 (i.e., 1 center cell and its 9 nearest neighboring cells, as
measured by the Euclidean distance between X/Y coordinates). We selected the 10-
cell radius as a rough approximation of two cell distances from the center cell in
each direction, which was visually determined to be a good indication of local
functional activity. To identify 10 CNs, these windows were then clustered by the
composition of their microenvironment with respect to the 21 identified cell types.
This resulted in a vector for each window containing the frequency of each of the
21 cell types amongst the 10 neighborhoods. These windows were then clustered
using Python’s scikit-learn implementation of MiniBatchKMeans with k= 10. Each
cell was then allocated to the same CN as the window in which it was centered. In
other words, CNs account for how the identity of the neighboring cell types impact
the center cell’s function. All CN assignments were validated by overlaying them on
the original fluorescent and H&E-stained images.

Calculation of spatial distances and ratios between cell types. The X/Y
coordinates for each cell type were determined during cellular segmentation, as
described above. The minimal distance between each cell type and its nearest other
cell types, and the averages of these minimal distances per tissue spot, were cal-
culated in R (github.com/nolanlab/SpatialScore). Given our interest in the rela-
tionship of cell distances between three cell types (i.e., effector T cells (CT1), tumor
cells (CT2) and Tregs (CT3)), we calculated the ratio of the minimal distances
between CT1—CT2 (right distance) versus CT1—CT3 (left distance). This distance
ratio represented the SpatialScore. To assess whether these ratios were significantly
different from those of a random sample, we performed the following analysis per
spot: For the number of CT1 cells in each spot, we randomly selected the same
number of non-CT1 (nCT1) cells. For each of these nCT1 cells, we calculated the
ratio of the minimal distances (nCT1—CT2 / nCT1—CT3) and determined the
mean of this sample. We repeated this random sampling 100 times, and the average
of all the means was reported. The distribution of the random values was assessed
by the quant output variable, which indicates how many of the random means are
smaller than the measured means. For instance, a quant of 97 indicates that 97% of
the random means are smaller than the measured means. Thus, quant values closer
to 100 or 0 indicate that the measured means are not random (Supplementary
Fig. 4k-n).

Sample size assessment for the SpatialScore. One hundred subsampling itera-
tions of 50% and 75% of the pretreatment Vectra-derived SpatialScore data were
performed. For each iteration, differences in the SpatialScore between responders
and nonresponders were modeled using a linear mixed-effects model function
[lmer(x ~response+ (1 | patient), data = data.frame(x= SpatialScore_vector,
response = compared_groups_vector, patient = patientID_vector))] taking a
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patient identifier as a random effect. The p values were derived using Sat-
terthwaite’s degrees of freedom method, implemented in the lmerTest (v3.1.2)94

package. The p value of the statistical test in each iteration was plotted, and the
paired mean SpatialScore in each iteration was visualized using the data analysis
with bootstrap-coupled estimation (DABEST) package v0.3.067. An exclusion
analysis was also performed. Using the Vectra SpatialScore data, samples from each
of the 14 patients were excluded over 14 iterations. The SpatialScore differences
between responders and nonresponders were modeled using the linear mixed-
effects models described above. The p value of the statistical test in each iteration
was plotted, and the paired mean SpatialScore in each iteration was visualized using
the data analysis with bootstrap-coupled estimation (DABEST) package v0.3.067.

Laser-capture microdissection (LCM). Two serial sections of the tissue micro-
array were taken at 7 µm thickness and mounted onto frame slides with poly-
ethylene naphthalate membranes (Thermo Fisher Scientific, #LCM0521). Slides
were immersed for 20 s each in xylene (three times), 100% ethanol (three times),
95% ethanol (two times), 70% ethanol (two times), water, hematoxylin (Dako,
#S3309), water, bluing reagent (Thermo Fisher Scientific, #7301), water, 70%
ethanol (two times), 95% ethanol (two times), 100% ethanol (three times), and
xylene (three times). Immediately after staining, cells were dissected from every
tissue microarray spot on an ArcturusXT LCM System (Thermo Fisher Scientific)
using the ultraviolet laser to cut out the desired region and the infrared laser to
adhere the membrane to a CapSure HS LCM Cap (Thermo Fisher Scientific,
#LCM0215). A tissue area containing roughly 1000 mononuclear cells was cap-
tured from each spot, with cell numbers determined based on density estimates by
cell counting in an adjacent H&E-stained section. If a core had more than 1000
mononuclear cells, a tissue fragment containing around 1000 mononuclear cells
was dissected from that core. If a core had less than 1000 cells, tissue fragments
from corresponding cores on the serial section membrane were combined in the
same LCM cap to obtain approximately 1000 cells. After microdissection, the caps
were sealed using 0.5-ml tubes (Thermo Fisher Scientific, #N8010611) and stored
at −80 °C until cDNA library preparation.

Preparation of cDNA libraries and RNA sequencing. Sequencing libraries were
prepared according to the Smart-3Seq protocol for LCM HS caps, as previously
described with slight modifications20. Briefly, 10 µl of lysis mix consisting of 40%
(v/v) 5M trimethylglycine solution (Sigma, #B0300), 20% (v/v) 10 mM nuclease-
free dNTP mix (Thermo Fisher Scientific, #R0192), 10% (v/v) 20 µM first-strand
primer in TE buffer (1 S, /5Biosg/GT GAC TGG AGT TCA GAC GTG TGC TCT
TCC GAT CTT TTT TTT TTT TTT TTT TTT TTT TTT TTT TV; Integrated
DNA Technologies), 10% (v/v) Triton-X 100 (Sigma #T8787; diluted to 0.5% v/v in
molecular biology-grade water), and 20% (v/v) Proteinase K (New England Biolabs,
#P8107S; diluted to 0.125 mg/ml in in molecular biology-grade water) was added to
the center of each LCM cap. Caps were sealed with 0.2 ml low-retention PCR tubes
(Corning, #PCR-02-L-C) and incubated on a pre-warmed metal CapSure incuba-
tion block (Thermo Fisher Scientific, #LCM0505) at 60 °C in an incubator. Then,
tubes were briefly centrifuged, and 10 µl of template-switching reverse-transcrip-
tion (TS-RT) FFPE LCM mix consisting of 40% (v/v) 5x SMARTScribe first-strand
reaction buffer (Clontech, #639537), 20% (v/v) 20 mM DTT (Clontech, #639537),
10% (v/v) 20x RNase inhibitor (Thermo Fisher Scientific, #AM2694), 4% (v/v)
50 µM second-strand primer in TE buffer (2 S, /5Biosg/CT ACA CGA CGC TCT
TCC GAT CTN NNN NrGrG rG; Integrated DNA Technologies), 4% (v/v)
200 mMMgCl2 (Sigma, #63069), 2% 5mM proteinase K inhibitor (EMD Millipore,
#539470), and 20% (v/v) 100 U/µl SMARTScribe reverse transcriptase (Clontech,
#639537) was added. Samples were incubated in a programmable thermal cycler
(42 °C for 30 min, 70 °C for 10 min, 4 °C hold), and 1.25 µl of a unique P5 primer
and 1.25 µl of a universal P7 primer (2 µM in TE buffer each; Integrated DNA
Technologies; sequences available upon request) and HiFi HotStart ReadyMix
(Kapa, #KK2601) were then added, followed by 22 cycles of PCR amplification
(98 °C for 45 s; 22 cycles at 98 °C for 15 s, 60 °C for 30 s, 72 °C for 10 s; then 72 °C
for 60 s, and 4 °C hold). Amplified cDNA was next purified with SPRI bead mix
(Beckman Coulter, #B23317) and a magnetic separation block (V&P Scientific,
#VP772F4). Finally, the samples were washed with 80% ethanol and resuspended
in TE buffer to yield the sequencing-ready library.

Libraries were profiled for size distribution on an Agilent 2200 TapeStation with
High Sensitivity D1000 reagent kits and quantified by qPCR with a dual-labeled
probe as previously described95. Libraries were excluded if <40% of their transcripts
were within a 165-500 bp range. A total of 64 libraries were mixed to equimolarity,
according to the qPCR measurements. The RNA libraries were sequenced on an
Illumina NextSeq 500 instrument with a High Output v2.5 reagent kit (Illumina,
#20024906) to a minimum sequencing depth of 1.5 M reads per sample (mean:
3.7 M) and minimum uniquely aligned reads of 364,468 per sample (mean:
916,607) using read lengths of 76 nucleotides (nt) for read 1 and 8 nt for read 2. On
average, we obtained reads from 11,166 genes per sample (median: 11,267) and
379,615 unique transcripts per sample (median: 336,005), which is comparable to
previously published FFPE-based RNA-seq studies of human cancers20.

Processing of RNA-seq data. Base calls from the NextSeq were de-multiplexed
and converted to FASTQ format with bcl2fastq (NextSeq system suite software,

Illumina v2.20.0.422). The five-base unique molecular identifier (UMI) sequence
and the G-overhang were extracted from FASTQ data, and A-tails were removed
with umi_homopolymer.py (github.com/jwfoley/3SEQtools). Reads were aligned
and further processed to remove duplicates using STAR v2.7.3a (github.com/
alexdobin/STAR)96. Bulk gene expression profiles were transcript per million
(TPM) normalized and log2 transformed. Differences in CXCL13 and CXCR5
expression between groups were modeled with Linear Mixed Effects Models on a
per spot basis using the lmer function from package lme4 (v1.1.21)97 and taking
the patient intercept as a random effect. The pairwise p values were derived from
t-ratio statistics in the contrast analysis using the lmerTest (v3.1.2)94 and corrected
for multiple hypothesis testing using the Holm Bonferroni method implemented in
the model-based (v0.1.2) package (github.com/easystats/modelbased).

Principal component analysis (PCA) immune scores. PCA scores and principal
component 1 (PC1) coefficients were computed for the normalized bulk RNA-seq
data on a per spot basis using the prcomp function in base R. The IFN-γ score was
calculated using the six gene signature published by Ayers et al. 39. The TGF-β score
was calculated using the 15 gene signature published by Mariathasan et al. 40. The
immune activation and immunosuppression scores were computed using the genes
listed in Supplementary Table 3c-d. Differences in PC1 scores between patient groups
were modeled using Linear Mixed Effects Models on a per spot basis using the lmer
function [lmer(x ~pre+ (1 | patient), data = data.frame(x= PCA_scores_vector, pre
= compared_groups_vector, patient = patientID_vector))] from package lme4
(v1.1.21)97 and taking the patient intercept as a random effect. Differences between
responders and nonresponders, as well as pretreatment and post-treatment samples
were modeled as fixed effects and tested using Satterthwaite’s degrees of freedom
method. The pairwise p values were derived from t-ratio statistics in the contrast
analysis using the lmerTest (v3.1.2)94 and corrected for multiple hypothesis testing
using the Holm Bonferroni method implemented in the modelbased (v0.1.2) package
(github.com/easystats/modelbased).

Identifying bulk RNAseq gene signatures associated with tumor cells and the
SpatialScore. LASSO regression models were used to find genes predictive of
tumor cells and the SpatialScore. These models were estimated using the LassoCV
object in the scikit-learn python package v0.22. Six-fold cross validation was used
to select the optimal regularization parameter. Specifically, an L1-regularized linear
model was fit to predict the frequency of tumor cells from the gene expression data
per tissue microarray spot. For this model, the response variable was the log-
transformed per spot percentage of tumor cells. A pseudo-count of 1% was added
to genes. The features utilized as predictors were the per spot log-transformed TPM
counts and the log frequency of CD4+ T cells. Genes with positive nonzero
coefficients were interpreted as positively associated with tumor cells. Similarly, an
L1-regularized linear model was fit to predict the SpatialScore from the gene
expression data on a per spot basis. For this model, the response variable was the
log-transformed SpatialScore distance ratio. The features used as predictors were
the per spot log-transformed TPM counts. Genes with nonzero coefficients were
selected in figures as predictive.

For both models, six cross-validation folds were used to determine the
regularization parameter. For the model predicting tumor cell frequency, the
selected regularization parameter was 0.028 and the average validation set mean
squared error (MSE) across folds was 0.31. For the model predicting distance ratio,
the selected regularization parameter was 0.300 and the average validation set MSE
across folds was 0.71.

CIBERSORTx signature matrix. To generate a CSx signature matrix, we used a
publicly available scRNA-seq dataset from Gaydosik et al. 62 that was obtained
from skin biopsies of five CTCL patients. Datasets were downloaded from the Gene
Expression Omnibus (GEO) database (accession code GSE128531), and single-cell
profiles were combined and analyzed using the Seurat R package (v3.1.4)98. Cells
with between 500 and 7500 genes detected and less than 10% mitochondrial
transcripts were included in the analysis.

Data were log10normalized and clustered with the Louvain method99 based on
the first 13 PCs and resolution of 1.8. Cell clusters were visualized using Uniform
Manifold Approximation and Projection (UMAP)100, with the same PCs. Major
cell types were assigned according to the expression of corresponding marker genes
(Supplementary Fig. 6a, Supplementary Table 4a). Fibroblasts and pericytes were
merged into a stromal cluster. A full list of differentially expressed genes between
the 10 annotated clusters is available in Supplementary Data 7. The T cell cluster
was divided into CD4+ T cells, CD8+ T cells, Tregs, γδ T cells, and tumor cells
based on the expression of certain T cell and tumor marker genes (Supplementary
Fig. 6b, Supplementary Fig. 7, Supplementary Table 4b). Tumor cells from patient
CTCL-5 were excluded due to extreme heterogeneity; these tumor cells were
characterized by high expression of NK cell markers (e.g., NKG7, GNLY),
suggesting NK T cell lineage T cell clustering was based on the first 15 PCs and
resolution of 1.9. The same PCs were used to generate UMAP projections for the T
cell clusters. A matrix of single cells and their assigned cell type identities were used
to create a signature matrix (Supplementary Data 8) using CSx (v.1.0) with
fractions mode on the CSx website (arguments used: single_cell = TRUE; code
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available from cibersortx.stanford.edu/)21. There was a good correlation between
the CSx and CODEX cell type clusters (Fig. 5h, Supplementary Fig. 8).

CIBERSORTx deconvolution. The signature matrix was used to deconvolve tumor
cell gene expression in CSx (v.1.0) with the HiRes deconvolution mode using CSx
website (arguments used: rmbatchSmode = T, QN= F)21. Log2 fold changes were
computed for every deconvolved gene across patient groups. Differences in gene
expression between patient groups were modeled with Linear Mixed-Effects
Models on a per spot basis using the lmer function [lmer(x ~ pre+ (1 | patient),
data = data.frame(x= gene_expression_vector, pre = compared_groups_vector,
patient = patientID_vector))] from package lme4 (v1.1.21)97 and taking the patient
intercept as a random effect. The p values were derived using Satterthwaite’s
degrees of freedom method, implemented in the lmerTest (v3.1.2)94 package. The p
values were adjusted with the Benjamini-Hochberg correction using the p.adjust
function in R. Volcano plots were generated using the ggplot2 (v3.3.0)101 and
ggrepel (v0.8.1)102 packages in R. Genes with Benjamini-Hochberg-adjusted p < 0.1
were considered significant (Fig. 5i–j, Supplementary Fig. 6d).

CSx-deconvolved CXCL13 expression in tumor cells was log2 transformed on a per
spot basis. Differences in CXCL13 expression between patient groups were modeled
using Linear Mixed-Effects Models on a per spot basis using the lmer function
[lmer(CXCL13 ~ pre+ (1 | patient), data = data.frame(CXCL13=CXCL13_expres
sion_vector, pre = compared_groups_vector, patient = patientID_vector))] from
package lme4 (v1.1.21) and taking the patient intercept as a random effect. The pairwise
p values were derived from t-ratio statistics in the contrast analysis using the lmerTest
(v3.1.2) and corrected for multiple hypothesis testing using the Holm Bonferroni
method implemented in the model-based (v0.1.2) package (github.com/easystats/
modelbased). To examine CXCL13 expression in tumor cells on a per patient basis, the
mean from biological replicates was computed before plotting the log2 normalized CSx-
deconvolved CXCL13 expression. The Wilcoxon signed-rank test was used to evaluate
whether patient-matched CSx-deconvolved CXCL13 expression in the tumor cells was
different between groups.

Statistics and reproducibility. Statistical analyses were performed with R and
Prism v8 (GraphPad Software, Inc). Results with p < 0.05 were considered sig-
nificant, unless otherwise stated. The significance of pretreatment differences
between individual responder and nonresponder patients was tested using a two-
sided Wilcoxon’s rank-sum test. Pre- to post-treatment pairwise statistical sig-
nificance for individual patients was tested using a two-sided Wilcoxon’s signed-
rank test. For differences across patient groups (i.e., responders versus non-
responders pretreatment, responders pre- versus post-treatment, nonresponders
pre- versus post-treatment, and responders versus nonresponders post-treat-
ment), the significance was tested using a linear mixed-effect model with Holm
Bonferroni multiple hypothesis testing corrections. For SpatialScore compar-
isons between responders and nonresponders pretreatment (comparison 1) or
post-treatment (comparison 2), the significance was tested using a linear mixed-
effect model taking a patient identifier as a random effect. Multiple hypothesis
testing was not employed for this analysis since the two comparisons were
independent: the pretreatment comparison assessed the ability of the Spatial-
Score to predict therapeutic response, whereas the post-treatment comparison
assessed the influence of therapy on the SpatialScore. For subsampling and
exclusion analyses of the pretreatment Vectra-derived SpatialScore differences
between responders and nonresponders, the significance was tested using a
linear mixed-effect model taking a patient identifier as a random effect. For
differential gene expression between patient groups in CSx deconvoluted
expression profiles, the significance was tested using linear mixed-effect models,
where p values were adjusting using Benjamini-Hochberg correction and results
with p < 0.1 were considered significant. Correlations were evaluated with the
non-parametric Spearman test. The investigators were not blinded to allocation
during experiments and outcome assessment. No sample-size estimates were
performed to ensure adequate power to detect a pre-specific effect size. *p < 0.05,
**p < 0.01, ***p < 0.001, ****p < 0.0001.

For CODEX, three experimental replicates were performed on consecutive
tissue sections. As shown in Supplementary Fig. 1d, experiment #1 had the highest
mean cell density per tissue microarray spot and was therefore selected for further
processing and analysis. The SpatialScore biomarker that was identified with
CODEX was reproduced and validated using the Vectra mIHC platform in one
experiment. Further reproducibility studies were not conducted.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
CODEX imaging data generated in this study have been deposited in the ImmunoAtlas
public repository [https://immunoatlas.org/NOLN/210920-1]. RNA-seq data generated
in this study have been deposited in the GEO database under accession code GSE162137.
The CTCL scRNA-seq publicly available data used in this study are available in the GEO
database under accession code GSE128531. Source data are provided with this
manuscript. The remaining data are available within the Article, Supplementary
Information or Source Data file. Source data are provided with this paper.

Code availability
SpatialScore code: https://github.com/nolanlab/SpatialScore. All other code used in this
study is previously published and specified in the Methods section.
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